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• We settle the debate on the effects of day
and night warming on vegetation activity.

• Misuse of methods lead to opposite effects
of Tmax and Tmin on vegetation activity.

• Multicollinearity issue can be treated by
properly choosing optimal ridge parame-
ter.

• Asymmetric warming has no opposite
effects on vegetation phenology and
productivity.

• Improper handling of multicollinearity in
regressions can cause misinterpretations.
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Over the past 50 years, global land surface air temperature has been rising at a much higher rate at night than during
the day. Understanding plant responses to the asymmetric daytime and nighttime warming in the context of climate
change has been a hot topic in global change biology and global ecology. It has been debatable whether the asymmet-
ric warming has opposite effects on vegetation activity (e.g., phenology, productivity). Here we settle the debate by
scrutinizing the underpinnings of different statistical methods and revealing how the misuse or improper use of
these methods could mischaracterize the effects of asymmetric warming with in situ and satellite observations. The
use of the ordinary least square (OLS) methods including both daytime (Tmax) and nighttime (Tmin) temperature in
the multiple regression models could overlook the multicollinearity problem and yield the misinterpretations that
Tmax and Tmin had opposite effects on spring phenology, autumn phenology, gross primary production (GPP), and
normalized difference vegetation index (NDVI). However, when the OLS methods were applied with Tmax and Tmin

included in separate models or alternatively the ridge regression (RR) method with properly selected ridge parameter
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was used, the effects of Tmax and Tmin on vegetation activity were generally in the same direction. The use of the RR
method with improperly selected ridge parameter could also mischaracterize the effects of asymmetric warming.
Our findings show that daytime and nighttime warming has no opposite effects on vegetation phenology and produc-
tivity in the northern hemisphere, and properly dealingwith themulticollinearity problem is critical for understanding
the effects of asymmetric warming on vegetation activity.
Asymmetric warming
Vegetation activity
Gross primary production
1. Introduction

Warmer temperatures are believed to have substantial impacts on
northern hemisphere vegetation (e.g., advancing spring phenology,
delaying autumn phenology, enhancing plant productivity). Nevertheless,
global land surface air temperature data show that over the past five de-
cades nights have been warming much faster than days, and daily mini-
mum temperatures (Tmin) have increased about 40% faster than daily
maximum temperatures (Tmax) (Davy et al., 2017; Solomon, 2007). More-
over, climate projections suggest that the diurnal asymmetry in the global
warming trend is likely to continue in many regions, particularly in the
northern latitudes (IPCC, 2013). Understanding plant responses to the
asymmetric warming is a key challenge in climate change and global
change biology studies.

Many recent studies have examined the impacts of the asymmetric diur-
nal warming on vegetation activity (e.g., phenology, productivity) in the
northern hemisphere (Cheesman and Winter, 2013; Peng et al., 2013; Xia
et al., 2014; Piao et al., 2015; Fu et al., 2016; Rossi and Isabel, 2017;
Shen et al., 2016; Tan et al., 2015;Wu et al., 2018; Chen et al., 2020). How-
ever, the direction (i.e., sign) of the impacts of daytime and nighttime
warming on vegetation activity has been debatable. Some previous studies
based on regression analyses suggested that asymmetric warming had op-
posite effects on vegetation activity, such as autumn phenology (Chen
et al., 2020; Wu et al., 2018), carbon cycle (Xia et al., 2014) and vegetation
productivity (Tan et al., 2015). These studies indicate that the influences of
daytime and nighttime warming would offset each other, weakening the
impacts of warming on vegetation activity. The opposite effects were not
supported by recent field experiments on spring phenology (Fu et al.,
2016; Rossi and Isabel, 2017), plant growth (Cheesman and Winter,
2013; Phillips et al., 2011), and respiration (Phillips et al., 2011). These
field studies showed that daytime and nighttime warming may affect vege-
tation activitywith differentmagnitude but in the same direction. These ex-
periments indicate that daytime and nighttime warming would reinforce
the effects of warming on vegetation activity with larger influences by day-
time warming. Therefore, settling the debate is critical for understanding
and projecting the responses of ecosystems to global warming.

Previous studies typically used multiple linear regression to examine
plant responses to the asymmetric warming of Tmax and Tmin (Xia et al.,
2014; Tan et al., 2015; Wu et al., 2018; Chen et al., 2020). In these studies,
the response variable (e.g., phenology, productivity) was regressed against
both Tmax and Tmin along with other climatic factors to quantify the relative
effects of daytime and nighttime warming. However, Tmax and Tmin are typ-
ically highly correlated to each other, and including both temperature var-
iables in the same regression model can lead to multicollinearity (Dormann
et al., 2013). In this case, the ordinary-least-squares (OLS) methods that
have been often used can yield unreliable temperature sensitivity estimates
with even incorrect signs (Alin, 2010). The ridge regression (RR) method
(Hoerl and Kennard, 1970) can overcome the multicollinearity issue and
has also been used to investigate the relative effects of Tmax and Tmin on au-
tumn phenology (Chen et al., 2020). However, improper estimates of tem-
perature sensitivity with opposite signs may still occur if the ridge
parameter is not correctly selected. Thus, one crucial issue with the re-
search on the effects of the asymmetric warming on vegetation activity is
whether the opposite effects of Tmax and Tmin derived from the regression
analyses are only misinterpretations or mischaracterizations caused by
the misuse or improper use of the statistical methods.

Here we elucidate whether asymmetric daytime and nighttime
warming has opposite effects on vegetation phenology and productivity
2

in the northern hemisphere by scrutinizing the underpinnings of different
statistical approaches and properly using these methods. Specifically, the
objectives of this study are to (i) identify the influences of differentmethods
on the interpretations of the asymmetric warming effects on vegetation ac-
tivity; (ii) investigate the effects of asymmetric warming on phenology and
productivity and northern ecosystems; and (iii) settle the debate whether
asymmetric warming has opposite effects on vegetation activity. In this
study, both in situ and satellite-based observations of the start of growing
season (SOS), the end of growing season (EOS), and vegetation productivity
(i.e., gross primary production (GPP) or normalized difference vegetation
index (NDVI)) were used to investigate the effects of asymmetric daytime
and nighttime warming on northern vegetation activity.

2. Materials and methods

2.1. In-situ data

The FlUXNET2015 database (https://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/) was used to explore the effects of daytime and night-
timewarming on SOS, EOS, and GPP at the ecosystem scale.We selected 56
sites that have at least 7 years of high-quality measurements from the data-
base (Supplementary Table S1). SOS and EOS were extracted from the
smoothed daily GPP curves, and the extraction of the phenology data was
described in a previous study (Wang et al., 2019). Daily maximum temper-
ature (Tmax) and minimum temperature (Tmin) were calculated from the
half-hourly meteorological data in the FLUXNET2015 database, and then
daily Tmax and Tmin were aggregated to monthly values. The preseason for
SOS (EOS) was defined as the period from January (June) to the month
which multiyear average SOS (EOS) is in. Preseason Tmax, Tmin, shortwave
radiation, and precipitation were calculated for SOS and EOS, respectively.
Growing season GPPwas calculated as the sum of daily GPP over the period
from SOS to EOS, and the growing season Tmax, Tmin, shortwave radiation,
and precipitation were calculated for the same period.

2.2. Satellite-derived data

We used gridded SOS and EOS derived from a long-term satellite de-
rived NDVI product: the GIMMS NDVI3g dataset during the period from
1982 to 2014. The derivation of SOS and EOS from the GIMMS NDVI3g
dataset is described in a previous study (Wang et al., 2019). The GIMMS
NDVI3g phenology product for the northern hemisphere (Wang et al.,
2019) is available online at http://data.globalecology.unh.edu. The SOS
and EOS estimates are ensemble means based on five widely used phenol-
ogy extraction methods. The growing season average NDVI was calculated
as the mean of monthly maximum composite from April to October in the
northern hemisphere. To match the spatial resolution of the gridded cli-
mate data, the SOS, EOS and growing season average NDVI data were
resampled to 0.5-degree spatial resolution. Satellite-derived NDVI has
been widely used as a proxy for plant productivity in many studies (Xiao
et al., 2019).

The MODIS phenology product (MCD12Q2v006) was also used to ex-
amine the effects of Tmax and Tmin on phenology. The MODIS phenology
product was also resampled to the spatial resolution of 0.5 degree.

The MODIS land cover product with the International Geosphere-
Biosphere Programme (IGBP) classification scheme was used to compare
temperature sensitivity among different vegetation types. The IGBP classifi-
cation scheme consists of 17 land cover types. Considering the flux site
availability, seven vegetation types were used in this study: evergreen

https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://data.globalecology.unh.edu
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needleleaf forests (ENF), deciduous broadleaf forests (DBF), mixed forests
(MF), open shrublands (OSH), Grasslands (GRA), permanent wetlands
(WET) and croplands (CRO).

2.3. Climate data

A long time series climate dataset - CRU-TS (Climatic Research Unit
Time Series) 4.04 was used in this study (Harris et al., 2014). This dataset
includes monthly maximum temperature (Tmax), minimum temperature
(Tmin), precipitation, and cloud cover with a spatial resolution of 0.5 de-
gree. The GRU-TS data for the period from 1982 to 2014 were downloaded
from https://crudata.uea.ac.uk/cru/data. The SOS/EOS preseason Tmax,
Tmin, precipitation and cloud cover were calculated for each pixel from
the CRU-TS4.04 data with the same method as used for the FLUXNET2015
database.

2.4. Statistical analysis

To investigate the influences of statistical methods on the interpretation
of the effects of Tmax or Tmin on vegetation activity (i.e., SOS, EOS, GPP, and
NDVI), we performed three regression-type analyses with a varying num-
ber of independent variables (Eqs. (1)–(5)). According to the signs of re-
gression coefficients, the sensitivities of vegetation activity to Tmax and
Tmin were classified to four types: Tmax

+ /Tmin
− (type A), Tmax

+ /Tmin
+ (type B),

Tmax
− /Tmin

+ (type C), and Tmax
+ /Tmin

− (type D), where T+ and T− represent
the positive and negative sensitivities of vegetation activity to temperature,
respectively.

We first used simple bivariate linear regression (two-variable) models
expressed as follows:

y ~β0 þ β1 � Tmax þ ε (1)

y ~β0 þ β1 � Tmin þ ε (2)

where y is the response variable (i.e., SOS, EOS, or GPP), βi (i=0, 1) is the
regression coefficient, ε is a random error component with a mean zero and
an unknown variance σ2, and Tmax and Tmin are the monthly maximum and
minimum temperature (°C), respectively. The two-variable models include
Tmax and Tmin, the two highly correlated variables, in separate models and
thus are able to correctly reveal whether the sensitivity of vegetation activ-
ity to either variable is positive or negative.

We also used multiple linear regression models with four variables as
follows:

y ~β0 þ β1 � Pr þ β2 � SW þ β3 � Tmax þ ε (3)

y ~β0 þ β1 � Pr þ β2 � SW þ β3 � Tmin þ ε (4)

where βi (i = 0, 1, 2 and 3) is the regression coefficient, SW is the daily
mean short-wave solar radiation (Wm−2), Pr is the cumulated precipitation
during the study period (mm), and other notations have the samemeanings
as in Eqs. (1) and (2). Compared with the two-variable models, the four-
variable models include Tmax and Tmin in separate models but include two
other controlling factors – precipitation and solar radiation.

Besides two- and four-variable models, we also used the following mul-
tiple linear regression model with five variables:

y ~β0 þ β1 � Pr þ β2 � SW þ β3 � Tmax þ β4 � Tmin þ ε (5)

where βi (i = 0, 1, …, 4) is the regression coefficient, and other notations
have the same meanings as in Eq. (4). Generally, it is convenient to deal
with multiple regression models in the matrix notation:

y ¼ Xβþ ε (6)

where y is an n×1 vector of the response variables,X is an n× pmatrix of
the independent variable, β is a p×1 vector of regression coefficients, ε an
3

n × 1 vector of random errors, p is the number of independent variables,
and n is the number of observations.

We first applied the ordinary least-squares (OLS) method, which was
widely used in previous studies, to estimate the regression coefficients:

β ¼ X0Xð Þ−1X0y (7)

where X′ is the transpose matrix of X. The t-test was used to determine
whether the regression coefficient is statistically significant. Noticeably,
the regression coefficient is the same as the correlation coefficient if the
data are standardized (Keith, 2019). We used the variance inflation factor
(VIF) to diagnose the multicollinearity between the independent variables,
and the value of VIF for the lth independent variable is calculated as
(Marquaridt, 1970):

VIFl ¼ 1
1−R2

l
(8)

where Rl
2(l = 1, 2, …, p)is the coefficient of multiple determination ob-

tained from regressing xl on the other regressor variables. Clearly, if xl is
nearly linearly dependent on some of the other regressors, then Rl

2 will be
near unity and VIFl will be large. In the absence of any linear relationship
(orthogonal) between the predictor variables, Rl

2 would be zero and VIFl
would be one. The deviation of VIFl from 1 indicates departure from orthog-
onality and tendency toward multicollinearity. Generally, VIFs lower than
3 indicate that the predictor variables are linearly independent, while
VIFs larger than 5 or 10 imply serious problems with multicollinearity
(Cohen et al., 2013; Keith, 2019).

When two or more independent variables inmultiple regression models
are highly correlated (i.e., Eq. (5)), the problem of multicollinearity occurs
(Supplementary A1). We then used the ridge regression (RR) method to
solve the regression models. Specifically, the RR method solves the matrix
inverse problem by adding a nonzero value of k (ridge or shrinkage param-
eter) to the diagonal elements of X′X so that the ridge estimator for the lin-
ear coefficients is expressed as (Hoerl and Kennard, 1970):

β ¼ X0X þ kInð Þ−1X0y (9)

where In is the identity matrix; and k is the ridge or shrinkage parameter,
which determines the strength of the penalty imposed on regression coeffi-
cients. In this study, the optimal k was estimated using the leave-one-out
cross-validation (LOOCV) method, which employs the entire dataset to cal-
ibrate the model and thus can obtain unbiased regression coefficient esti-
mations (James et al., 2013). In this method, the regression coefficients
were estimated using all observations except for one single data point
which is used to calculate the test squared error (TSE) between the model
prediction and the observation. The procedure is repeated n times until
every observation is used exactly once for calculating the TSE. The mean
squared error (MSE) for a given k is calculated as the average of these n
TSEs. Then, the optimal value of k is chosen as the one for which the MSE
is minimal across all MSE values. Other methods in selecting the optimal
ridge parameter (k) used in previous studies were also used for comparison
with the LOOCV method (Supplementary A2). To assess the statistical sig-
nificance of the ridge regression coefficients, we used 2000 bootstrap sam-
ples with replacement from the original data and fitted the model to the
samples using the RRmethod. The values between 2.5 and 97.5 percentiles
of the ridge regression coefficients were considered as the 95% confidence
intervals. If the intervals do not include 0, the regression coefficients are sig-
nificantly different from 0. On the contrary, if the intervals include 0, we
could not reject the null hypothesis that the ridge regression coefficients
are 0. To evaluate the reduction of multicollinearity by the RR method,
the VIF of the lth (l = 1, 2, …, p) independent variable for each value of
k is computed using the lth diagonal element of the matrix (Ryan, 2008):

d ¼ X0X þ kInð Þ−1X0X X0X þ kInð Þ−1 (10)

https://crudata.uea.ac.uk/cru/data
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These analyses were mainly conducted based on in situ observations of
SOS, EOS and GPP from the FLUXNET2015 database. We also used
satellite-based observations of SOS and EOS to evaluate whether our find-
ings based on in situ measurements would apply to every location across
the northern hemisphere. The analyses based on both in situ and satellite
observations were used to determine whether the asymmetric effects of
daytime and nighttimewarming on vegetation phenology and productivity
were caused by improper use of statistical methods.

3. Results

3.1. Evidence from in situ observations

The simple bi-variate linear regressions (OLS) between SOS and Tmax or
Tmin (two-variable models with only one of the two temperature variables
included in eachmodel; Eq. (1) and (2)) showed how Tmax and Tmin affected
SOS separately. The majority of the FLUXNET sites (54 out of 56) fell in
Type A (Tmax

− /Tmin
− with negative sensitivities to both Tmax and Tmin) and

Type B (Tmax
+ /Tmin

+ , with positive sensitivities to both Tmax and Tmin)
(Fig. 1a), and the sensitivity of SOS to Tmax had the same sign as that to
Tmin (Fig. 1b). Similar results were obtainedwhenwe regressed SOS against
precipitation, solar radiation, and Tmax or precipitation, solar radiation, and
Tmin (four-variable models with only one of the two temperature variables
included in each model; Eqs. (3) and (4)) (Supplementary Figs. S1 and S2).
The values of the variance inflation factors (VIF) for the three independent
variables in the multiple linear regressions were all significantly below the
critical threshold (Supplementary Fig. S3a and b), and thus there were no
multicollinearity problems in these models.
Fig. 1. Sensitivity of spring phenology (i.e., start of growing season, SOS) to dailymaxim
and the five-variable RR model at FLUXNET sites. The frequency of the SOS sensitivity t
Tmax
+ /Tmin

− (Type D) is shown in (a) (the two-variable OLS model), (c) (the five-variable O
sitivity to Tmax and the SOS sensitivity to Tmin for the two- and five-variable OLS models
and T− represent the positive and negative sensitivities of SOS to temperature, respecti

4

However, when we regressed SOS against both Tmax and Tmin along
with precipitation and solar radiation (a five-variable model with both tem-
perature variables included in the samemodel; Eq. (5)), substantially differ-
ent results were obtained. The majority of the 54 sites fell within Type C
(Tmax

− /Tmin
+ with negative and positive sensitivities to Tmax and Tmin, respec-

tively) and Type D (Tmax
+ /Tmin

− , with positive and negative sensitivities to
Tmax and Tmin, respectively) (Fig. 1c). The VIF values for Tmin and Tmax in
the regression model were both above the critical threshold (Supplemen-
tary Fig. S3c) due to their high correlation (R2 = 0.88, p < 0.001; Supple-
mentary Fig. S4). This indicates the existence of multicollinearity in this
model, which could lead to unreasonable interpretations about how asym-
metric warming influenced vegetation activity (e.g., SOS responded oppo-
sitely to Tmax and Tmin, Fig. 1d). The sensitivities of SOS to Tmax and Tmin

that were statistically significant also exhibited larger variations in magni-
tude, and varied from−45.2 days °C−1 to 87.4 days °C−1 for Tmax and from
−89.6 days °C−1–46.0 days °C−1 for Tmin (Fig. 1b, Supplementary
Table S2). These are typical mathematical artifacts of the OLS method
when the multicollinearity problem exists in the model.

To corroborate our finding that the opposite effects of Tmax and Tmin on
SOS were caused by the multicollinearity in the five-variable model based
on the OLS method, we used the average daytime temperature (Tday) to
replace Tmin and regressed SOS simultaneously against precipitation, solar
radiation, Tmax and Tday. It is anticipated that the two daytime temperature
measures (Tmax and Tday) should have similar effects on SOS.
Counterintuitively, however, this method shows that SOS responded oppo-
sitely to Tmax and Tday (Supplementary Fig. S5e and f). Thus, the OLS
methods with both temperature variables included in the same model,
which were widely used in previous studies, could not properly reveal the
um (Tmax) andminimum (Tmin) temperature from two- and five-variable OLSmodels
o Tmax and Tmin in Tmax

− /Tmin
− (Type A), Tmax

+ /Tmin
+ (Type B), Tmax

− /Tmin
+ (Type C), and

LS model), and (e) (five-variable RRmodel). The scatter plots between the SOS sen-
and the five-variable RR model are shown in (b), (d) and (f), respectively. Here, T+

vely.
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relative effects of daytime and nighttimewarming on spring phenology due
to the multicollinearity.

To overcome the problemofmulticollinearity in thefive-variablemodel
(Eq. (5)), we tested the performance of the ridge regression (RR)method in
estimating the sensitivity of SOS to Tmax and Tmin (Fig. 1e, f). The majority
of the sites (54 out of 56) belonged to Type A (Tmax

− /Tmin
− ), suggesting that

with both temperature variables included in the same model and the use
of the RR method, Tmax and Tmin had no opposite effects on SOS but both
advanced SOS (Fig. 1e). This result is similar to that obtained by the OLS
methods treating Tmax and Tmin separately (the two- and four-variable
models; Fig. 1a, b, Supplementary Fig. S1) but not to that based on the
five-variable OLS model (Fig. 1c, d).

For the two-variable model, the sensitivity values (i.e., regression coef-
ficients) thatwere statistically significant (p< 0.05) for both Tmax (36 out of
56) and Tmin (32 out of 56) were only found within type A, suggesting that
daytime and nighttime warming could advance the onset of spring phenol-
ogy; on average, an increase of 1 °C in Tmax or Tmin would advance SOS by
about 4 days (Fig. 2a). For the five-variable OLS model, only few sites had
statistically significant (p < 0.05) sensitivity values for both Tmax (6 out of
56; Fig. 2b) and Tmin (4 out of 56; Fig. 2b) (Fig. 1g). For the five-variable
RR model, the statistically significant (p < 0.05) sensitivity of SOS to Tmax

(28 out of 56; Fig. 2c) and Tmin (31 out of 56; Fig. 2c) was only found in
Type A (Tmax

− /Tmin
− ) (Fig. 2c). Thus, both daytime and nighttime warming

advanced SOS. The statistically significant Tmax sensitivity varied from
−3.98 to −0.66 days °C−1 with a median of −1.39 days °C−1, and the
Tmin sensitivity ranged from −4.54 to −0.47 days °C−1 with a median of
−1.32 day °C−1 (Fig. 2c). Interestingly, we found that the absolute magni-
tude of the significant sensitivities of SOS to Tmax and Tmin differed among
Fig. 2. The number of FLUXNET sites for different types of sensitivity of spring phenolog
temperature (Type A: Tmax

− /Tmin
− ; Type B: Tmax

+ /Tmin
+ ; Type C: Tmax

− /Tmin
+ ; Type D: Tmax

+ /T
OLS model, and (c) the five-variable RR model. Each number within the plots shows the
phenology. T+ and T− represent the positive and negative sensitivities of SOS to tempe
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sites (Supplementary Table S2 and Fig. S6), indicating that the effects of
asymmetric warming on spring phenology were different for different eco-
systems.

Unlike the OLS method (Figs. 1c, d; 2b), the RR method properly han-
dled the multicollinearity in the five-variable model with both Tmax and
Tmin, two highly correlated variables, included and thereby revealed that
daytime and nighttime warming actually had no opposite effects on SOS.
Despite its advantage, the RR method relies on the proper selection of the
ridge parameter (k) for ensuring the performance of the method. The esti-
mated ridge regression coefficients of Tmax and Tmin varied with k
(Fig. 3a) (with one FLUXNET site shown as an example here). When k =
0, the RR model is equivalent to the five-variable OLS model (Eq. (5)).
The regression coefficients for Tmax and Tmin had opposite signs when k
was small (<1). As k further increased, the sign of the coefficient for Tmax

changed from positive to negative and eventually the coefficients for both
Tmax and Tmin tended to stabilize. The optimal k value was estimated
using the leave-one-out cross validation (LOOCV) strategy and other ridge
parameter selection methods. Notably, the optimal k value selected by the
HKBmethodwas too small in this case. The optimal k value (~4) estimated
using the LOOCVmethod was reasonable because both Tmax and Tmin stabi-
lized as negative values (Fig. 3b). Similar patterns of ridge regression coef-
ficients with the changes in k were observed at other FLUXNET sites.

Besides SOS, we also investigated the influences of the different
methods on interpretations of asymmetric warming effects on EOS (Supple-
mentary Figs. S7 and S8) and GPP for the FLUXNET sites (Supplementary
Figs. S9 and S10). Similarly, when both Tmax and Tmin were included in
the regression equation, the OLS methods indicated that Tmax and Tmin

had opposite effects on EOS and GPP. These were also caused by
y (i.e., start of growing season, SOS) to daily maximum (Tmax) and minimum (Tmin)
min
− ). The models included are: (a) the two-variable OLS model, (b) the five-variable
number of sites that have statistically significant Tmax or Tmin sensitivities to spring
rature, respectively.



Fig. 3. Sensitivity of spring phenology (i.e., start of growing season, SOS) to daily maximum (Tmax) and minimum (Tmin) temperature based on the ridge regression (RR)
method. (a) The regression coefficients (the solid lines) vary with the ridge parameter (k) at the selected FLXUNET site (CA-Man). The symbols indicate optimal k values es-
timated using the leave-one-out cross validation (LOOCV) strategy and other ridge parameter selecting methods (HKB, LW, A-S, K-D; See Supplementary A2 for details). We
also selected 1000 bootstrap samples of our data to assess the statistical significance of the ridge regression coefficients. (b) The estimated SOS sensitivity to Tmax and Tmin at
the selected FLXUNET site. The bar plot shows themedian values for Tmax (red) and Tmin (blue) of the 1000 bootstrap samples of our data at the optimal k value, and the error
bar stands for the 95% confidence intervals (CIs) of these values. The 95% CIs of Tmax and Tmin did not include 0, and the regression coefficient at the selected site were sig-
nificantly different from 0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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multicollinearity due to the high correlation between Tmax and Tmin

(Supplementary Fig. S11). In contrast, no opposite effects of Tmax and
Tmin on EOS (Supplementary Figs. S7 and S8) and GPP (Supplementary
Figs. S9 and S10) were found when the OLS methods were used by
including Tmax and Tmin in separate models, or the RR method was used
by choosing the proper k values.

The results of the RR method showed that both daytime and nighttime
warming delayed EOS, and the mean sensitivity of EOS to Tmin (2.08 ±
2.15 day °C−1) was twice as large as that to Tmax (1.10 ± 1.01 day °C−1)
(Supplementary Fig. S8d). This indicates that the autumn phenology
might respond more strongly to nighttime warming than to daytime
warming. GPP also responded to Tmax and Tmin in the same direction, and
the increases in Tmax and Tmin may both enhance or depress GPP across
6

different ecosystems (Supplementary Fig. S10d). Moreover, the mean
positive sensitivity of GPP to Tmin (16.6 ± 8.72 gC °C−1) was slightly
higher than that to Tmax (14.0 ± 8.67 gC °C−1), while the mean negative
sensitivity of GPP to Tmin (−19.4 ± 6.69 gC °C−1) was almost identical
with that to Tmax (−19.5 ± 8.32 gC °C−1) (Supplementary Fig. S10d).

3.2. Evidence from satellite observations

To evaluate the generality of our findings based on in situ measure-
ments, we analyzed the effects of Tmax and Tmin changes on satellite-
derived SOS in the northern hemisphere (>30° N). The results based on
the satellite SOS data derived from the GIMMS NDVI3g product for the pe-
riod 1982–2014 were consistent with those for the FLUXNET sites (Fig. 4).



Fig. 4. Sensitivity of SOS derived from satellite observations to Tmax and Tmin estimated using the two- and five-variable OLS models and the five-variable RR model. The
frequency of the SOS sensitivity to Tmax and Tmin in Tmax

− /Tmin
− (Type A), Tmax

+ /Tmin
+ (Type B), Tmax

− /Tmin
+ (Type C), and Tmax

+ /Tmin
− (Type D) is shown in (a) (the two-variable

OLS model), (c) (the five-variable OLS model), and (e) (the five-variable RR model). The scatterplots between the SOS sensitivity to Tmax and the SOS sensitivity to Tmin

for the two- and five-variable OLS models and the five-variable RR model are shown in (b), (d), and (f), respectively. T+ and T− represent the positive and negative
sensitivities of SOS to temperature, respectively.

Fig. 5. Spatial distributions of the sensitivity of SOS derived from satellite observations (GIMMS NDVI3g) to Tmax and Tmin estimated using the two- and five-variable OLS
models and the five-variable RR model. The sensitivity of SOS to Tmax was estimated by the two-variable OLS model (a), the five-variable OLS model (c), and the five-
variable RR model (e). The sensitivity of SOS to Tmin was estimated by the two-variable OLS model (b), the five-variable OLS model (d), and the five-variable RR model
(f). Pixels that were not vegetated or had insignificant sensitivity to Tmax or Tmin were masked out.
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Notably, most of the pixels in the northern hemisphere fell within Types A
(Tmax

− /Tmin
− ) and B (Tmax

+ /Tmin
+ ) for the OLS method by regressing SOS

against Tmax and Tmin separately (95%; Fig. 4a) and the five-variable RR
method (80%; Fig. 4e), and SOS responded to Tmax and Tmin in the same di-
rection (Fig. 4b, f). In contrast, the five-variable OLS method indicated that
when both Tmax and Tmin were included in the regression equation, most
pixels (85%) belonged to Types C (Tmax

− /Tmin
+ ) and D (Tmax

+ /Tmin
− )

(Fig. 4c), leading to the mischaracterization that SOS responded oppositely
to Tmax and Tmin (Fig. 4d). Also, the estimated sensitivity of SOS to Tmax and
Tmin for the OLS method by treating Tmax and Tmin simultaneously showed
large variations (−53.0 to 43.7 day °C−1; Fig. 4b), which were generally
beyond the reasonable ranges. These weremainly caused by the high corre-
lations between Tmax and Tmin and prevailing multicollinearity over the
study areas (Supplementary Fig. S12a and b).

The satellite-derived SOS product also allowed us to evaluate the spatial
patterns of SOS changes in response to variations in Tmax and Tmin (Fig. 5).
The results from the OLS methods by treating Tmax and Tmin separately
(Fig. 5a, b) show that both daytime and nighttime warming advanced
spring phenology in most areas of the northern hemisphere. In contrast,
the five-variable OLS method led to consistently opposite effects from
Tmax and Tmin on SOS in most areas of the northern hemisphere (Fig. 5c,
d) due to the prevailing multicollinearity (Supplementary Fig. S12a, b).
By properly dealing with the multicollinearity problem, the five-variable
RR method shows that both Tmax and Tmin advanced SOS in most areas of
the northern hemisphere (Fig. 5e, f). Pixels having negative sensitivity of
SOS to Tmax (33%) were more widespread than those having negative sen-
sitivity of SOS to Tmin (19%) in the northern middle latitudes (Supplemen-
tary Table S3). Also, themean sensitivity of SOS toTmax (−1.55±1.22 day
°C−1) was larger than that to Tmin (−1.29 ± 1.08 day °C−1) in absolute
Fig. 6. Sensitivity of EOS derived from satellite observations to Tmax and Tmin estimated
frequency of the SOS sensitivity to Tmax and Tmin in Tmax

− /Tmin
− (Type A), Tmax

+ /Tmin
+ (

variable OLS model, (c) the five-variable OLS model, and (e) the five-variable RR mod
Tmin for two-, five-variable OLS models and the five-variable RR model are shown in (b

8

magnitude (Supplementary Table S3). These results indicate that the SOS
in these areaswasmore efficiently triggered by Tmax than byTmin. In the bo-
real areas, the fraction of the pixels having negative sensitivity of SOS to
Tmax was almost identical with that to Tmin in both the percentage of the
land area (10.5% and 10.4% for Tmax and Tmin, respectively) and in the
magnitude (−0.72 ± 1.08 day °C−1 and −0.73 ± 0.72 day °C−1 for
Tmax and Tmin, respectively) (Supplementary Table S3), indicating that day-
time and nighttime warming had identical effects on SOS in these regions.
We also examined the effects of asymmetric warming on SOS derived from
MODIS for the period from 2001 to 2016. Similar results were obtained
with the MODIS-based SOS (Supplementary Figs. S13 and S14).

We further investigated the influences of the different methods on the
interpretations of the asymmetric warming effects on the satellite-derived
EOS and NDVI derived from the GIMMS NDVI3g product for the period
1982–2014. Similarly, when both Tmax and Tmin were included in the re-
gression equation, the OLS method led to the mischaracterization that
EOS and NDVI responded oppositely to Tmax and Tmin (Figs. 6d and 7d)
due to the high correlations between Tmax and Tmin (i.e., the multicollinear-
ity problem) (Supplementary Fig. S12c-f). By contrast, no opposite effects of
Tmax and Tmin on EOS and NDVI were found for the OLS method with Tmax

and Tmin included in separate models (Figs. 6b and 7b) or for the RR
method with the optimal k values properly selected (Figs. 6f and 7f).

In addition, we investigated the spatial variability of the sensitivities of
EOS and NDVI to Tmax and Tmin based on the results derived from the five-
variable RRmethod. Interestingly, some spatially contrasting effects of Tmax

and Tmin on EOS were observed (Fig. 8e, f). In the northern middle lati-
tudes, both Tmax and Tmin tended to delay EOS, and similar percentages of
land areas (12.7% and 12.3% for Tmax and Tmin, respectively) had positive
temperature sensitivities, but the mean sensitivity of EOS to Tmin (1.0 ±
using the two- and five-variable OLS models and the five-variable RR model. The
Type B), Tmax

− /Tmin
+ (Type C), and Tmax

+ /Tmin
− (Type D) are shown in (a) the two-

el. The scatter plots between the SOS sensitivity to Tmax and the SOS sensitivity to
), (d), and (f), respectively.



Fig. 7. Sensitivity of NDVI derived from satellite observations to Tmax and Tmin estimated using the two- and five-variable OLS models and the five-variable RR model. The
frequency of the SOS sensitivity to Tmax andTmin in Tmax

− /Tmin
− (TypeA), Tmax

+ /Tmin
+ (Type B), Tmax

− /Tmin
+ (Type C), andTmax

+ /Tmin
− (TypeD) are shown in (a) the two-variableOLS

model, (c) the five-variable OLS model, and (e) the five-variable RRmodel. The scatter plots between the SOS sensitivity to Tmax and the SOS sensitivity to Tmin for two-, five-
variable OLS models and the five-variable RR model are shown in (b), (d), and (f), respectively.

Fig. 8. Spatial distributions of the significant sensitivities of EOS derived from satellite observations to Tmax and Tmin estimated using the two- and five-variable OLS models
and the five-variable RR model: spatial distributions of the statistically significant sensitivities of SOS to Tmax obtained by the two-variable OLS model (a), the five-variable
OLS model (c), and the five-variable RRmodel (e); spatial distributions of the statistically significant sensitivities of SOS to Tmin obtained by the two-variable OLS model (b),
the five-variable OLS model (d), and the five-variable RR model (f).
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1.05 day °C−1) was higher than that to Tmax (0.76 ± 0.75 day °C−1)
(Supplementary Table S4). These results were consistent with those ob-
served from in situ data as most FLUXNET sites were located in the middle
latitudes. In contrast, both daytime and nighttime warming tended to ad-
vance EOS in the boreal regions. The pixels with negative EOS sensitivity
to Tmin accounted for a slightly larger fraction of the boreal regions than
those with negative EOS sensitivity to Tmax (13.7% and 10.6% of the land
area for Tmin and Tmax, respectively); the mean EOS sensitivity to Tmin

(−0.32 ± 0.28 day °C−1) was also larger than that to Tmax (−0.23 ±
0.20 day °C−1) (Supplementary Table S4), indicating that Tmin had higher
influence on EOS than Tmax in these regions (Fig. 9).

The results based on the five-model RR method showed that both day-
time and nighttime warming enhanced NDVI in boreal regions (Fig. 9e,
f). The pixels with positive effects of Tmax on NDVI (50.7%) accounted for
almost the same fraction of the land area as those with positive effects of
Tmin on NDVI (47.8%), while the mean sensitivity of NDVI to Tmax (5.31
± 2.15% °C−1) was much higher than that to Tmin (2.15 ± 2.48% °C−1)
(Supplementary Table S5). Some spatially contrasting effects of Tmax and
Tmin on NDVI were observed in the northern middle latitudes. For example,
both Tmax and Tmin depressed NDVI in drier temperate regions (e.g., central
Eurasia, western China, and western USA) both enhanced NDVI in wet re-
gions (Supplementary Table S5).

4. Discussion

Based on both in situ and satellite observations, our study showed that
the OLS method with both Tmax and Tmin included in one regression
model led to the misconception that daytime and nighttime warming had
opposite effects on vegetation activity (e.g., SOS, EOS, GPP, or NDVI) due
to the high correlations between these two temperature variables. Multicol-
linearity, which refers to the linear relationship among two or more inde-
pendent variables, is a common feature in regression analyses of many
descriptive ecological data sets (Alin, 2010). Mathematically, no matter
what the dependent variable (e.g., the various metrics used in this study)
is, the OLS estimation equation becomes ill-conditioned if two or more in-
dependent variables are linearly related (Theorem in Supplementary A1).
Under such conditions, unreasonable interpretations would be derived by
using the OLS methods (Phillips et al., 2011). Thus, it is critical to ensure
Fig. 9. Spatial distributions of the significant sensitivities of NDVI derived from satellite o
and the five-variable RR model: spatial distributions of the statistically significant sensit
OLS model (c), and the five-variable RRmodel (e); spatial distributions of the statisticall
the five-variable OLS model (d), and the five-variable RR model (f).
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that the independent variables are unrelated in the multiple regression sta-
tistical models for the use of the OLS methods. The opposite effects of day-
time and nighttime warming on vegetation activity reported in previous
studies (Xia et al., 2014; Tan et al., 2015; Wu et al., 2018; Chen et al.,
2020) were likely caused by the misuse or improper usage of the statistical
methods. Moreover, the ill-conditioned OLS equations are highly sensitive
to observation errors and can become unstable with minor changes in the
input data (Cohen et al., 2013). Thus, the estimated sensitivities of vegeta-
tion activity to Tmax and Tmin based on the OLS method exhibited large var-
iations and may be beyond the reasonable ranges (Fig. 1; Supplementary
Figs. S7 and S9).

To overcome the multicollinearity problem, we applied the RR method
and compared its performance against that of the OLS method with Tmax

and Tmin included in separate models. The consistent findings between
them illustrated that the RR method is a useful tool in solving the multicol-
linearity problem by decreasing the VIF values of correlated independent
variables (Supplementary Table S2). These results showed that responses
of vegetation activity to Tmax and Tmin were in the same direction. Com-
pared with the OLS method by treating Tmax and Tmin separately, the RR
method has an advantage in that it can quantify the relative influences of
Tmin and Tmax on vegetation activity.

Despite the advantages of the RR method, the optimal ridge parameter
(k) is usually unknown and needs to be properly estimated from data. To
date, several quantitativemethods have been proposed to select the optimal
k value (Dorugade, 2014). Here, we compared the performances of differ-
ent methods for the estimation of k in dealing with the multicollinearity
problem of asymmetric warming (Supplementary A2 and Table S2). The
optimal k values selected by the method proposed by Hoerl et al. (1975)
(hereafter referred as the HKB method) were too small in some cases and
could lead to improper estimates of sensitivity (i.e., regression coefficients)
to vegetation activity, particularly GPP (Supplementary Table S2). Ryan
(2008) also pointed that the HKBmethod is not proper for the extrememul-
ticollinearity problems. The methods proposed by Alkhamisi and Shukur
(2007) (A-S method) and Dorugade (2014) (A-Dmethod) tended to overes-
timate the ridge parameter (Fig. 3a; Supplementary Table S2). Generally,
the ridge parameter values selected by the method proposed by Lawless
and Wang (1976) (L-W method) and the LOOCV method were reasonable
(Supplementary Table S2). To use the RR method, it is critical to check
bservations to Tmax and Tmin estimated using the two- and five-variable OLS models
ivities of SOS to Tmax obtained by the two-variable OLS model (a), the five-variable
y significant sensitivities of SOS to Tmin obtained by the two-variable OLS model (b),



G. Zhu et al. Science of the Total Environment 822 (2022) 153386
the ridge trace (Fig. 3a) to ensure that the regression coefficients are stable
at the selected k value because no method can lead to universally optimum
k values (Cule and De Iorio, 2012). When counterintuitive results are ob-
tained, the ridge trace (Fig. 3a) should be examined to ensure that the re-
gression coefficients stabilize at the selected optimal ridge parameter.

Our finding that vegetation activity (i.e., SOS, EOS, GPP, and NDVI)
responded to asymmetric daytime and nighttime warming in the same di-
rection is consistent with results from manipulative experiments. Our re-
sults indicated that Tmax and Tmin could both enhance or reduce GPP.
When water is readily available, increasing Tmax and Tmin can increase
GPP (Manunta and Kirkham, 1996). This may be explained by the follow-
ing mechanisms. First, photosynthesis in C3 plants generally has a lower
temperature optimum than respiration (Luo et al., 2009), and therefore
warming in the daytime (e.g., early morning) could result in more photo-
synthetic gains than respiratory costs (Dhakhwa and Campbell, 1998;
Zheng et al., 2009). Second, nighttime plant respiration is highly related
to carbon substrate from daytime photosynthesis. Some experiments re-
ported that nighttime warming may stimulate compensatory photosynthe-
sis due to depletion of leaf carbohydrates at night (Turnbull et al., 2002;
Wan et al., 2009). Third, vegetationmay acclimate to temperaturewarming
and reduce respiration sensitivity to temperature (Armstrong et al., 2006;
Atkin and Tjoelker, 2003; Cheesman and Winter, 2013; Phillips et al.,
2011). In contrast, in water limited regions, both daytime and nighttime
warming can strengthen water stress and thereby limit vegetation activity,
and thus increases in Tmax and Tmin may have negative effects on ecosystem
production in arid regions.

Our results also show that although vegetation activity responded to
daytime and nighttime warming in the same direction, the sensitivities of
vegetation activity to Tmax and Tmin could differ in magnitude. For example,
both in situ and satellite data showed that the sensitivity of SOS to Tminwas
slightly lower than that to Tmax in absolute magnitude, while the sensitivity
of EOS to Tmin was twice as large as that to Tmax. Meanwhile, nights have
been warming about 40% faster than days (Davy et al., 2017; Solomon,
2007), and the diurnal asymmetry in the global warming trend is projected
to continue in the northern latitudes (IPCC, 2013). Therefore, nighttime
warming could have larger effects on phenology particularly EOS than day-
time warming. Our analysis based on the RR method revealed that both
daytime and nighttime warming advanced the bud break in temperate
tree species, and the impact of Tmax was larger than that of Tmin. These re-
sults were consistent with the findings of some previous studies (Piao
et al., 2015; Fu et al., 2016; Rossi and Isabel, 2017). However, the impact
of Tmax on SOS was lower than or equal to that of Tmin at some biomes
(Fig. 2b-e), especially in the boreal regions of North America and eastern Si-
beria (Fig. 3c and f). This is mainly because the plants in boreal regions use
the photoperiodism to protect them from the risk of freezing damage. As
the photoperiod is equally long in autumn and spring, plants generally
break dormancy by experiencing a dose of low temperatures (Körner and
Basler, 2010).Tmin can also limit soil root water absorption through soil fro-
zen in cold regions (Pangtey et al., 1990), and affect plant growth in spring.
Thus, Tmin may play a more or equally important role in controlling SOS
than Tmax in these regions. Daytime and nighttime warming can both ad-
vance or both delay leaf senescence, partly due to water availability in au-
tumn across different regions and ecosystems. To date, however, there still
is a lack of such experiments on direct effects of asymmetricwarming on au-
tumn phenology and further experiments are needed.

Finally, our finding that vegetation activity responds to asymmetric
warming in the same direction indicates that terrestrial biosphere models
driven by the average daily temperature (e.g., LPJ-DGVM (Sitch et al.,
2003), Biome-BGC (Thornton et al., 2002)) instead of sub-daily
(e.g., hourly) data might be able to simulate the overall effects of warming
on vegetation activity. However, these models implicitly assumed that the
effects of Tmax and Tmin on vegetation activity are equal. Our results indi-
cated that the sensitivities of vegetation activity to daytime and nighttime
warming may be different, and meanwhile, nights warmer much faster
than the days. Thus, these models could underestimate the effects of
warmer temperatures.
11
5. Conclusions

To our knowledge, this is the first time to investigate how the im-
proper use of statistical methods can mischaracterize the effects of
asymmetrical daytime and nighttime warming on vegetation activity
(e.g., phenology, productivity). Different methods may lead to different
interpretations of the influences of asymmetrical warming on vegeta-
tion activity. Our results demonstrated that the opposite effects of
Tmax and Tmin on vegetation activity interpreted by the OLS methods
and reported in some previous studies are caused by the misuse or im-
proper use of statistical methods. The RR method is a useful tool in deal-
ing with the multicollinearity problem and quantifying the relative
effects of daytime and nighttime warming, but properly choosing the
optimal ridge parameter is critical for obtaining reasonable results.
The optimal ridge parameter determined by the HKB method may be
too small due to the extreme multicollinearity, and can cause improper
estimates in regression coefficients. Proper usage of the statistical
methods is critical for understanding the relative effects of asymmetric
warming on northern hemisphere vegetation. Our findings can improve
our understanding of how global warming will affect Earth's terrestrial
ecosystems. Future well-designed field manipulative experiments are
needed to better understand the mechanisms underlying the effects of
asymmetric warming on plant phenology and growth under a changing
climate.
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